Frost formation and ice adhesion on superhydrophobic surfaces
نویسندگان
چکیده
منابع مشابه
Predictive model for ice formation on superhydrophobic surfaces.
The prevention and control of ice accumulation has important applications in aviation, building construction, and energy conversion devices. One area of active research concerns the use of superhydrophobic surfaces for preventing ice formation. The present work develops a physics-based modeling framework to predict ice formation on cooled superhydrophobic surfaces resulting from the impact of s...
متن کاملFrost flower formation on sea ice and lake ice
[1] Frost flowers are clusters of ice crystals found on freshly formed sea ice and occasionally on frozen lakes. They belong to a class of vapour-related phenomena that includes freezing fog, hoar frost and dew. It has hitherto been supposed that they form by condensation from a supersaturated atmosphere or from water wicked up through porous sea ice. Here we show that they can form on solid, p...
متن کاملDelayed frost growth on jumping-drop superhydrophobic surfaces.
Self-propelled jumping drops are continuously removed from a condensing superhydrophobic surface to enable a micrometric steady-state drop size. Here, we report that subcooled condensate on a chilled superhydrophobic surface are able to repeatedly jump off the surface before heterogeneous ice nucleation occurs. Frost still forms on the superhydrophobic surface due to ice nucleation at neighbori...
متن کاملFormation of ice lenses and frost heave
[1] I examine the morphology of ice growth in porous media. Intermolecular forces cause premelted fluid to migrate and supply segregated ice growth (e.g., lenses) and frost heave. I account for the net effect of these microscopic interactions in a homogenized model formulated in terms of fundamental physical properties and characteristics of the porous medium that can be measured; no ad hoc par...
متن کاملSuperhydrophobic Coatings with Reduced Ice Adhesion
A brief description of how superhydrophobicity can help mitigate the ice accretion problem on power network equipment and other exposed structures by reducing ice-tosurface adhesion is presented. Basic models, namely the Wenzel and Cassie–Baxter models, accounting for the contact angle of water on solid surfaces relating to the influence of surface roughness on hydrophobicity are discussed. The...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applied Physics Letters
سال: 2010
ISSN: 0003-6951,1077-3118
DOI: 10.1063/1.3524513